Life Cycle Management of Abrasive Tools and its Effect on Sustainable Grinding

Motivation

- Machining with geometrically undefined cutting edges represents a key technology capable of
- High process performance
- High process stability
- High quality tolerances
- However, sustainability is a growing concern.
- Abrasive tools are main enablers for capable processes and are the focus of the following analyses.

Sources

- After Dahms, Gunter, Hino, Dornfeld, Pictures from Tyrolit, Vemasonic, H2L, EARTH, acetate.

Use Phase: Grinding Process, Process Chain, Leveraging

- **Enhance the grinding process**
 - Coolant reduction
 - Reduced energy consumption
 - Higher productivity

- **Shorten the process chain**
 - Avoid tool change and add value by combination of hard cutting, grinding and hard roller burnishing
 - Avoid the hardening process by grind-hardening

- **Leverage grinding for enhanced product life cycle**
 - Speed stroke grinding to induce compressive stress
 - Decreased product wear by tribolayers
 - Shorter wear-intensive run-in phases of seal systems

Use Phase: Tool Design

- **Design parameters**
 - Grit type
 - Grit size and size distribution
 - Bond type
 - Tool hardness
 - Pore volume and shape

- **Design impacts**
 - Process productivity
 - Process forces
 - Process heat generation and convection
 - Tool wear

Future Work

- Evaluating abrasive tool production
- Energy consumption in the production of abrasives related to tool productivity
- Bonding, including pore builders
- Body design (material and shape)
- Evaluating grinding process sustainability
- Machine power measurements
- Grinding swarf, emissions to air or cooling lubricant
- Leveraging tool conditioning
- Generating a toolbox for the selection of abrasive grits
- Evaluating end of life
- Including supply chain and packaging aspects