A decision tool for portfolio selection aiming to replace Air Supply Houses

Objectives
- Create a decision tool for portfolio selection aiming to retrofit Air Supply Houses on a General Motors’ plant with a sustainable objective in mind:
 - Selecting the Air Supply Houses available for replacement
 - Assess the sustainable impacts of Air Supply Houses: economical, environmental and social impacts
 - Evaluate the different alternatives with the 3 criteria: economical, environmental and social impacts
 - Allocate capital with financial and technological constraints

Introduction
- Assessing sustainability is a Multi-Criteria Decision Problem
- To simplify the problem, only 3 families of ASHs and only 4 ASHs available for replacement are assumed

Model Overview: Step 1 & 2

1st step: Creation of potential ASHs
- **Reason**: Difficulties to obtain data from ASH manufacturers
- **Method used**: Selection process developed by ASH manufacturers

2nd step: Sustainable assessment
- **Reason**: These data are needed in order to rank the ASHs
- **Method used**:
 - Social assessment: pairwise comparisons
 - Environmental assessment: energy consumption
 - Economical assessment: Cost present value

Model Overview: Step 3 & 4

3rd step: Ranking method
- **Reason**: To know the best ASHs for replacement by categories
- **Method used**: PROMETHEE II Method

Details: Step 1 & 2

ASHs available for replacement

<table>
<thead>
<tr>
<th>ASH Model</th>
<th>Creation of ASHs for replacement</th>
<th>Sustainable assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASH 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASH 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASH 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Details: Step 3

Step 1: Ranking of the ASHs

<table>
<thead>
<tr>
<th>ASH</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASH 1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ASH 2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ASH 3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Step 2: Capital allocation

<table>
<thead>
<tr>
<th>ASH</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASH 1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ASH 2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>ASH 3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Details: Step 4

4th step: Portfolio selection
- **Reason**: Choose the best ASHs with the financial resources available and the CFM capacity needs
- **Method used**: Linear Programming
- **Software used**: LINDO

Conclusion
- **Case study**
 - 3 families of ASHs: 2,500 CFM / 10,000 CFM and 15,000 CFM
 - 4 different ASHs within each category
 - An investment budget of $45,000 and a CFM need of 30,000
- **3 analysis performed**:
 - 1st analysis: Environmental is the most important criterion,
 Economical the second and Social the least
 - 2nd analysis: Environmental is the most important criterion,
 Economical the second and Social the least
 - 3rd analysis: Criterion are equally important
- **Conclusion**
 3 different portfolios are selected for the 3 different analysis, so weights have huge impact on the final result and should be selected carefully.