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Introduction & Motivation Objective
m Engineers play a vital role in sustainability. Incorporating correct m Understand how effective current standard manufacturing
performance metrics, big data, and smart manufacturing gives us the performance metrics are in analyzing smart manufacturing
ability to improve the processes.
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Methodology Case Study

Machine: Mori Seiki NVD 1500 DCG.

m Tool: 5/16” solid carbide center cutting end mill.

m Internal/External change: Increase in production from 10 to 12 and 17
parts per day.

m How to evaluate the smartness of performance metrics.
m Define the system for evaluation.
m What quality and quantity of relevant variables are required.
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Case Study Results Implementation and Conclusion
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