Toxicity impacts induced by the manufacturing of flexible harvesting membranes: project scope

Motivations
- Developing flexible and lightweight electronic energy harvesting membranes (potentiality of new designs, easy integration to building and textiles)
- The flexibility of the membrane allows roll-to-roll processing
- High-throughput and low cost of manufacturing

General goal of the project
- Delivering a new class of inexpensive, durable, and flexible functional devices that will enable roll-to-roll fabrication of flexible solar cells and smart electronics.
- Aspects to be addressed
 - Processing of materials
 - Predictive computational materials science for long (aging) and short multiphysics timescales
 - Design of durable electronics for in-situ embedding and matrix engineering
 - Green Engineering and total life-cycle analysis
- LMAS focus: Green engineering

Background: thin films
- The high absorption coefficient of the materials enables very thin layers for an optimal light absorption.
- Common flexible thin films
 - Inorganic module: a-Si, CIGS
 - Organic module: semiconductor polymer (bulk heterojunction P3HT:PCBM)
- Lower efficiency than rigid solar cells. However, they require less material and therefore allow flexibility and large scale production using roll-to-roll processing.
- Photovoltaic energy conversion from sunlight into electricity is expected to be reduced under 0.50 $/W

Structure of thin film
- Thin film are made of a succession of layers:
 - flexible substrate
 - active materials: two layers forming a p-n junction
 - electrodes
- Example of a organic thin film: the active materials are blend to form an heterojunction

Roll-to-Roll printing for electronics
- Ink composed of a matrix and conductive nanoparticles.
- The ink is deposited on the substrate using roll to roll technique and printing cylinders
- Precise patterning of nanoparticle inks using laser ablation process

Coating technique and patterning
- The laser ablation of the material induces the production of particles.
- Objectif of no vacuum for large scale processing: particles directly ejected in the air.
- Small particles could get into the respiratory system
- Toxicity issues

Future Work
- LCA softwares such as Gabi do not take the toxicity effects of the laser induced production of nanoparticles. So far, this process was performed under vacuum conditions.
- Objectives
 - Simulate the production of particles during laser ablation
 - Evaluate the impact of material and laser parameters
 - Integrate this process into GaBi in order to perform an LCA analysis and evaluate the toxicity impact.