Toxicity impacts induced by the manufacturing of flexible harvesting membranes: project scope

Funding Sources: KAUST

Motivations

- Developing flexible and lightweight electronic energy harvesting membranes (potentiality of new designs, easy integration to building and textiles)
- The flexibility of the membrane allows roll-to-roll processing
 High-throughput and low cost of manufacturing

General goal of the project

- Delivering a new class of inexpensive, durable, and flexible functional devices that will enable roll-to-roll fabrication of flexible solar cells and smart electronics.
- Aspects to be addressed
 - Processing of materials
 - Predictive computational materials science for long (aging) and short multiphysics timescales
 - Design of durable electronics for in-situ embedding and matrix engineering
 - Green Engineering and total life-cycle analysis
- LMAS focus: Green engineering

Credit: SolarServer.com

_

Structure of thin film

- Thin film are made of a succession of layers:

The high absorption coefficient of the materials enables very thin layers for an optimal light absorption.

- Common flexible thin films
 - Inorganic module: a-SI, CIGS

Background: thin films

- Organic module: semiconductor polymer (bulk heterojunction P3HT:PCBM)
- Lower efficiency than rigid solar cells. However, they require less material and therefore allow flexibility and large scale production using roll-to-roll processing.
 - Photovoltaic energy conversion from sunlight into electricity is expected to be reduced under 0.50 \$/W

- flexible substrate
- active materials: two layers forming a p-n junction
- electrodes
- Example of a organic thin film: the active materials are blend to form an heterojunction

Roll-to-Roll printing for electronics

Coating technique and patterning

- Ink composed of a matrix and conductive nanoparticles.
- The ink is deposited on the substrate using roll to roll technique and printing cylinders
- Precise patterning of nanoparticle inks using laser ablation process

TEM Image of colloidal silver nanoparticles. Credit: Chien Dang 2013

Laser Induced Production of Nanoparticules

The laser ablation of the material induces the production of particles.

Objectif of no vacuum for large scale processing: particles directly ejected in the air.

Small particles could get into the respiratory system

Toxicity issues

Future Work

LCA softwares such as Gabi do not take the toxicity effects of the laser induced production of nanoparticles. So far, this process was performed under vacuum conditions.

Objectives

- Simulate the production of particles during laser ablation
- Evaluate the impact of material and laser parameters
- Integrate this process into GaBi in order to perform an LCA analysis and evaluate the toxicity impact.

