Making Supplier Energy Waste Streams Transparent

Funding Sources: Industrial Affiliates of LMAS

Motivations and Objectives
- Regulatory agencies and compliance measures have obligated manufacturers to reduce their corporate-wide environmental impact in the recent years, with economic penalties and social stigma otherwise.
- Manufacturers undertake constant, inherent risk of affecting their environmental footprint while they depend on suppliers.
- Frameworks for energy audits are undefined between production enterprises and are dependent on self-reported, unit-inconsistent data by individual suppliers.
- This project aims to develop an energy auditing methodology which enables energy streams to be more transparent for detecting waste points and suggesting improvements.
- This framework may be used in applications such as supplier selection by manufacturers and/or footprint improvements by non-compliant suppliers.

Supplier Google Earth View
- In order to understand and potentially make point-detection of energy wastes, both manufacturers and suppliers can label their energy streams into a energy data hierarchy, analogous to a Google Earth View.
- An energy waste cause can be hypothesized for actual assessment afterward.
- Examples are provided

Parameter Level
- **Detection**
 - Sensors
 - Power Meters
 - Watt node
 - Functional Unit
 - Volume, V [mm³]
 - Parameters
 - Material Removal Rate, MRR [mm³/s]
 - Width of cut, w [mm]
 - Depth of cut, d [mm]
 - Feed rate, f [mm/rev]

- **Suggested Improvement**
 - **Model Characterization**
 - $E = \frac{1}{2}mv^2$
 - **Energy Prediction**
 - $E = \frac{1}{2}mv^2$

- **Tool Path Level**
 - **Detection**
 - Sensors
 - Power Meters
 - Yokogawa, 3P3I3W
 - Functional Unit
 - Volume, V [mm³]

- **Process Level**
 - **Detection**
 - Sensors
 - Watt node / MT Connect
 - Functional Unit
 - Machine Energy Consumption, E_m [J]

- **Suggested Improvement**
 - **Energy Categorization**
 - Processing Energy
 - Process Block Examples
 - Milling
 - Drilling
 - Turning
 - Embedded Energy
 - **Process Chain Level**
 - **Detection**
 - Functional Unit
 - Value-added Time per Machine, t_{va} [sec.]
 - **Example Process Chain**
 - Laser Cutting + GMAW_{metal} + GMAW_{clad} + Hand Grinding
 - **Suggested Improvement**
 - **Process Chain Optimization**

- **Facility Level**
 - **Detection**
 - Functional Unit
 - Factory Energy Demand, E [kJ]

- **Suggested Improvement**
 - **Improved Factor Design and Utility Planning:**
 - Near
 - Equipment Maintenance
 - Ex: Inspect HVAC gasket
 - Long
 - Equipment Upgrade
 - Ex: Waste-heat recovery system

- **Summary and Future Work**
 - Manufacturers must understand their suppliers' energy stream through defined data collection standards in order to make accurate assessments.
 - This study assumed level-discrete energy waste; hence, neglecting data uncertainty based on accuracy nor precision.
 - Users are encouraged to utilize this framework as preliminary point-source detection-to-improvement method.
 - Data uncertainties and error propagation will be considered as part of future work.